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ABSTRACT 

Surrogate demand models (SDMs), which provide efficient estimation of engineering demand parameters (EDPs), are crucial 

components in probabilistic seismic risk assessment (PSRA) of structural systems. The accuracy and reliability of the resulting 

risk estimation are directly related to the predictive performance of the SDMs. For structural systems with multiple EDPs, 

multivariate surrogate demand modeling methods are desirable for their capability to handle the multicollinear EDPs 

simultaneously. However, such methods have not yet been widely applied in SRA. The current practice still mostly relies on 

developing univariate demand models separately for each EDP, requiring subsequent approximation of the correlation structure 

between the EDPs if at all considered. The present study conducts a comparative study of four different multivariate surrogate 

demand modeling approaches, namely Multivariate Linear Regression (MvLR), Linear Partial Least Squares Regression (L-

PLSR), Kernel PLSR (K-PLSR) and Artificial Neural Network (ANN). To the authors’ knowledge, this is the first time that 

PLSR is tested for surrogate demand modeling of structural systems.  Two case-study highway bridges, including one multi-

span simply-supported concrete girder (MSSS-Con) bridge and one multi-span continuous steel girder (MSC-Steel) bridge, are 

considered. Latin hypercube sampling is conducted to account for the uncertainties in bridge structural parameters. A hazard-

consistent ground motion suite is compiled using the Conditional Mean Spectrum ground motion selection method and 

nonlinear time history analyses are conducted in OpenSees. According to the results, ANN and K-PLSR deliver the best 

predictive performance among all the compared multivariate SDMs. Particularly, K-PLSR reveals itself to be a very promising 

multivariate surrogate demand modeling approach for its superior predictive performance and stability, capability to handle 

small-size data with high-dimension feature space, computational efficiency, ease of model tuning, robustness to 

multicollinearity and good model transferability. 

Keywords: seismic risk assessment, multivariate surrogate demand modeling, partial least squares regression, highway bridge 

structures, conditional mean spectrum ground motion selection 

INTRODUCTION 

In probabilistic seismic risk assessment (PSRA) of structural systems, statistical surrogate demand models (SDMs) are 

crucial components for efficient engineering demand parameter (EDP) estimation and uncertainty propagation. Often times, 

multiple EDPs in the same structure are of interest because they may be correlated to different failure modes. For example, for 

building structures, interstory drift ratio (IDR) and peak floor acceleration (PFA) are typically considered as the damage 

indicators for structural and non-structural components, respectively [1],[2]; for highway bridge structures, column drift ratio, 

deformations of bearings and abutments are important indicators of seismic damage of these bridge components [3],[4]. 

However, at present, the commonly adopted approach is to develop multiple separate univariate SDMs for each EDP [3]-[5], 

where the non-trivial model tuning and calibration has to be repeated multiple times and the correlations between different 

EDPs have to be approximated [4]. In this regard, multivariate regression methods, where multiple dependent variables can be 

handled simultaneously within the same model, are promising solutions. Moreover, multivariate regression methods may be 

more advantageous when the dependent variables are multicollinear [6],[7], which is often the case for the different EDPs 

within the same structure. To date, very few studies have adopted multivariate regression methods to model the correlated 

structural demands. Luco et al. [7] employed multivariate linear regression to develop SDMs for the interstory drift ratios at 

different stories for steel moment-resisting frame buildings. Goda and Tesfamariam [8] developed multivariate SDMs using 

copulas to model the maximum and residual IDR, and PFA at different story levels of a non-ductile reinforced concrete frame. 

Mangalathu et al. [9] applied artificial neural network in surrogate demand modeling of different structural components of 

highway bridges.  

Among the candidates for multivariate regression, comparative analyses for SDMs have yet to be conducted, and notable 

prospects exist that have not been explored within the context of seismic surrogate demand modeling. Particularly, Partial Least 
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Squares Regression (PLSR) is a multivariate regression method to characterize the relations between a set of independent 

variables and one or more dependent variables. PLSR first extracts a set of mutually orthogonal latent variables (also known 

as the PLS components) by maximizing the covariance between the independent variables and the dependent variables. Then, 

the mapping between the resulting latent variables and the dependent variables are established through ordinary least squares 

regression. PLSR shares much in common with the Principle Component Regression (PCR) but identifies the latent variables 

in a supervised manner [10]. The ability to handle multiple dependent variables and high-dimension feature space (even when 

the number of independent variables exceeds the number of samples), model parsimony, robustness to predictor 

multicollinearity and computational efficiency [11]-[13] have made PLSR a standard tool in chemometrics. Also, there have 

been emerging applications of PLSR in many other scientific fields such as bioinformatics, medicine and social science.  

In this study, we compare different multivariate regression methods, namely Multivariate Linear Regression (MvLR), 

Linear Partial Least Squares Regression (L-PLSR), Kernel Partial Least Squares Regression (K-PLSR) and Artificial Neural 

Network (ANN), in seismic surrogate demand modeling of structural systems. Two case-study highway bridge structures at a 

hypothetical site in Memphis, TN are considered. A hazard-consistent ground motion suite is selected using the Conditional 

Mean Spectrum method and a large number nonlinear time history analyses (NLTHAs) are carried out in OpenSees. The model 

predictive performance and stability, computational efficiency and other practical issues are evaluated and discussed.  

MULTIVARIATE SURROGATE DEMAND MODELING OF HIGHWAY BRIDGES 

Multivariate surrogate demand models establish the mapping between p predictors 
1 2[ , ,..., ]pX X XX (e.g., ground 

motion intensity measures (IMs) and structural design parameters) and m dependent variables 
1 2[ , ,..., ]mY Y YY (e.g., different 

EDPs within the same structure). The theoretical background of the considered multivariate regression methods (MvLR, ANN 

and PLSR) is briefly introduced in this section. 

Multivariate Linear Regression (MvLR) 

MvLR seeks to find linear relations between X and Y through the following equation: 

 Y = XB+E  (1) 

where Y is a n by m matrix, X is a n by (p+1) matrix with an all one first column (considering the intercept terms), B is a (p+1) 

by m matrix of unknown parameters and E is a n by m regression residual matrix. n is the number of training samples. The least 

squares estimator of B can be obtained as follows [14]: 

  
1

T Tˆ


B X X X Y  (2) 

Note that the regression coefficients B̂  in the above equation is equivalent to developing a suite of separate univariate linear 

regression models for each of the EDPs (also known as the widely-accepted Cloud analysis method by Cornell et al. [15] 

when only considering a single scalar IM as the predictor). However, the errors for the univariate linear regression models are 

assumed to be independent while the errors for the multivariate linear regression model are correlated.  

Partial Least Squares Regression (PLSR) 

PLSR establishes the mapping between the independent variables X and the dependent variables Y by means of mutually 

orthogonal latent variables (or PLS components). PLSR first performs matrix decomposition of the centered matrices X and Y:  

 T 
X

X TP E  (3) 

 T 
Y

Y UQ E  (4) 

 T XW  and U YR  (5) 

where T = [t1, t2, …, tk] and U = [u1, u2, …, uk] are matrices of the extracted k PLS components of X and Y; P and Q represent 

the loading matrices; EX and EY are the residual matrices; W = [w1, w2, …, wk] and R = [r1, r2, …, rk] represent the weights of 

the PLS components of X and Y. The PLS components ti and ui as well as their corresponding weights wi and ri are successively 

extracted by maximizing the covariance between X and Y. Different component extraction algorithms have been proposed and 

the SIMPLS [12] algorithm is adopted herein for its high computational efficiency. Next, ordinary least squares regression is 

performed between the extracted PLS components T and Y as shown in Eq. (6). Note that the PLS components T are mutually 

orthogonal, which is favorable for least squares regression. 

  Y TC E  (6) 
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The above equation can also be rewritten in terms of X: 

  Y XB E  (7) 

where B WC . The optimal number of PLS components can be determined via cross validation. PLSR extracts the 

components in a supervised manner, thereby fewer components are required compared with Principle Component Regression 

(PCR). PLSR achieves dimension reduction and regression simultaneously and is found to be more robust to predictor 

multicollinearity [6],[11],[16]. PLSR can be further implemented in conjunction with a kernel transformation of the original 

X matrix:  

  , ( ), ( )i j i jK   x x x x  (8) 

where K(·) denotes the kernel transformation, xi, xj are two generic rows of X, ϕ(·) denotes a nonlinear mapping to a higher-

dimension feature space, < · > denotes the inner product. By mapping the original feature space to a higher-dimension feature 

space, the potential nonlinear relations between the predictors can be better captured. In the present study, Kernel Partial 

Least Squares Regression (K-PLSR) with 2nd order and 3rd order polynomial kernels are considered. To distinguish from the 

K-PLSR method, the PLSR method using X without any kernel transformation will be referred to as the Linear PLSR (L-

PSLR) method hereafter. For detailed derivation of PLSR, readers may refer to the following literature [11],[12],[17]. 

Artificial Neural Network (ANN) 

The general structure of an ANN is shown in Figure 1. ANN is comprised of a collection of connected units (or neurons) 

associated to three types of layers: the input layer, the hidden layers and the output layer. In the present study, a single hidden 

layer is considered per Mangalathu et al. [9]. The nonlinear relations between the input X and the output Y are modeled through 

the connections between the neurons. 

 

Figure 1. Schematic of artificial neural network structure 

The output of a neuron in the hidden layer is a function of the linear combinations of the outputs from the neurons in the 

previous layer: 

  i iy h w x b   (9) 

where h(·) is the activation function (usually considered as the sigmoid function), wi denotes the weights, xi denotes the 

outputs from the previous later and b is a bias term. The network weights are first randomly initiated and are adjusted using 

the training set via a certain backpropagation algorithm. To control overfitting, a validation set is employed to determine 

when to stop the training process.  

Estimation of the Error Covariance Matrix 

In addition to the point estimates of the EDPs Ŷ  obtained from the above mentioned multivariate regression models, the 

correlated errors of the EDPs should also be quantified for uncertainty propagation in PSRA. Assuming the errors follow a 

constant multivariate normally distribution, the maximum likelihood estimate of the error covariance matrix Σ  is [14]: 

 
T

ˆ
n


E E

Σ  (10) 

where ˆ E Y Y denotes the n by m regression residual matrix. The correlated errors can then be generated from the 

multivariate normal distribution ˆ( , )N 0 Σ . 
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CASE STUDY HIGHWAY BRIDGES AND GROUND MOTION SUITE SELECTION 

Case Study Highway Bridges 

Two highway bridges, one multi-span simply-supported concrete girder (MSSS-Con) bridge and one multi-span 

continuous steel girder (MSC-Steel) bridge, typical in the Central and Southeastern US region are considered for the case-study 

for comparative assessment of alternative multivariate SDMs. The two bridges are assumed to be located at a hypothetical site 

(-89.9, 35.2) in Memphis, TN. The bridge configurations are adopted from Nielson [4] as shown in Figure 2. The span length 

for the MSSS-Con bridge and MSC-Steel bridge is 24.4 m and 30.3 m, respectively. Both bridges have the same deck width of 

15 m and deck slab depth of 0.178 m. Except for the given bridge geometric parameters as shown in Figure 2, uncertainties in 

other bridge structural parameters such as concrete and steel reinforcement strength, damping ratio, reinforcement ratio, 

abutment and foundation stiffness are considered via the Latin Hypercube Sampling technique. For each of the two case-study 

bridges, two datasets with 360 and 1000 bridge samples (approximately one and three times of the number of ground motion 

records selected (360) as shown in the next section) are generated to investigate the performance of the multivariate SDMs 

under different sample sizes. Each bridge sample is then randomly paired with a ground motion record. The parameterized 

OpenSees 3-D finite element models used in this study are adapted from Kameshwar et al. [18]. The sample median (Tmed) of 

the geometric mean of the first two fundamental periods of MSSS-Con and MSC-Steel bridge is 0.56s and 0.33s, respectively. 

Spectral acceleration (Sa) at the period Tmed is considered as the ground motion intensity measure (IM). The set of predictors 

considered for the subsequent surrogate demand modeling are listed in Table 1. Nonlinear time history analyses are performed 

and eight EDPs (as shown in Table 2) are recorded.  

  

Figure 2. Schematics of the case study highway bridges (a) MSSS-Con bridge, (b) MSC-Steel bridge 

Table 1. Definitions of the predictors X for the two case-study bridges 

MSSS-Con  MSC-Steel 

Predictor Definition  Predictor Definition 

X1 Sa(0.56s)  X1 Sa(0.33s) 

X2 Concrete strength  X2 Concrete strength 

X3 Steel reinforcement yield strength  X3 Steel reinforcement yield strength 

X4 Coefficient of friction of bearing pad  X4 Abutment passive stiffness 

X5 Shear modulus of bearing pad  X5 Abutment active stiffness 

X6 Dowel strength  X6 Foundation vertical stiffness 

X7 Abutment passive stiffness  X7 Foundation transverse stiffness 

X8 Abutment active stiffness  X8 Mass participation ratio 

X9 Foundation vertical stiffness  X9 Damping ratio 

X10 Foundation transverse stiffness  X10 Column longitudinal reinforcement ratio 

X11 Mass participation ratio  X11 Column transverse reinforcement ratio 

X12 Damping ratio  X12 Coefficient of friction of high type steel fixed 

bearings - Longitudinal 

X13 Column longitudinal reinforcement ratio  X13 Coefficient of friction of high type steel fixed 

bearings - Transverse 

X14 Column transverse reinforcement ratio  X14 Coefficient of friction of high type steel 

expansion bearings - Longitudinal 

   X15 Coefficient of friction of high type steel 

expansion bearings - Transverse 

   X16 Steel bearing stiffness multiplication factor 
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Table 2. Definitions of the EDPs Y for the two case-study bridges 

EDPs Definition Abbreviation 

Y1 Column drift ratio Col 

Y2 Expansion bearing deformation - Longitudinal Ebl 

Y3 Expansion bearing deformation - Transverse Ebt 

Y4 Fixed bearing deformation - Longitudinal Fbl 

Y5 Fixed bearing deformation - Longitudinal Fbt 

Y6 Abutment deformation - Active Aba 

Y7 Abutment deformation - Passive Abp 

Y8 Abutment deformation - Transverse Abt 

 

Hazard-Consistent Ground Motion Suite Selection 

To generate a ground motion suite consistent with the seismic hazard of the considered site, the conditional mean spectrum 

(CMS) ground motion selection method (originally proposed by Baker [19] and Jayaram et al. [20]) is employed. The general 

procedures of the CMS method are as follows: (1) Determine the primary conditioning IM (usually Sa at the fundamental 

period) target from the site-specific hazard curve and calculate the corresponding mean M, R and   from deaggregation; (2) 

Derive the conditional multivariate normal distributions of all the IMs (usually Sa at a range of periods) considering the IM 

correlations; (3) Generate a number of target response spectra from the multivariate normal distribution obtained in (2); (4) 

Select the same number of ground motion records from a given database (e.g., PEER NGA-West 2 [21]) that best match the 

target spectra. Unlike ground motion selection methods based on the uniform hazard spectrum (UHS) which conservatively 

assumes constant risk at all the spectral periods, the CMS method can lead to more hazard-consistent ground motion records 

[19]. The original CMS method [19], [20] only considered Sa at a specific period as the primary conditioning IM and is hereafter 

referred to as CMS-Sa. Recently, Kohrangi et al. [22] proposed a modified version of the CMS method (CMS-Savg) by 

considering the spectral averaging IM Savg over a range of periods (as shown in Eq. (11)) as the primary conditioning IM.  

 

1/

( )

1

( )

N
N

i

i

Savg Sa T


 
  
 
  (11) 

Compared with CMS-Sa, CMS-Savg is able to select a suite of ground motions with further improved hazard consistency (i.e., 

lower scaling factor, better compatibility to multiple IMs and more moderate conditional variability across all spectral periods) 

[22]. Therefore, in this study, CMS-Savg ground motion selection method is employed considering the period range of 0.1-

5.0s. Probabilistic seismic hazard analysis (PSHA) is conducted based on the 2008 USGS hazard model in OpenQuake. The 

ground motion prediction equations (GMPEs) for Eastern North America by Hassani and Atkinson [23] and the Sa correlation 

model by Baker and Jayaram [24] are adopted. In order to cover a wide range of ground motion intensities, 12 sets of scaled 

recorded ground motion records corresponding to return periods ranging from 30 to 2x105 years are selected for the site of 

interest. Each ground motion set contains 30 scaled ground motions, resulting in a total of 360 ground motion records. All of 

the records are selected from the PEER NGA-West2 database [21]. The conditional mean spectra along with the ±1σ lines (for 

the 12 return periods) as well as the response spectra of the individual selected ground motion records are shown in Figure 3. 

 

Figure 3. Conditional mean spectra and response spectra of the 360 selected ground motion records 
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RESULTS AND DISCUSSIONS 

The predictive performance of different multivariate surrogate demand models is compared via repeated 5-fold cross 

validation. Note that for ANN, since a validation set is required in model training, a 60%-20%-20% data splitting is considered 

for cross validation. The cross validated mean squared error (MSE) is adopted as the goodness-of-fit metric. Note that for the 

ANN, L-PLSR and K-PLSR metamodels, all of the predictors in Table 1 are included and the best model tuning parameters are 

adopted according to experience from past literatures (e.g., only one hidden layer for ANN is considered as per Mangalathu et 

al. [9]), grid searching as well as trial and error. The optimal network structure and regularization parameter for ANN and the 

optimal number of PLS components for the PLSR models are listed in Table 3. For the MvLR metamodel, IM is considered as 

the sole predictor, which is in line with the practice of the conventional univariate Cloud analysis [15]. The predictors (X) and 

EDPs (Y) are log-transformed prior to the model fitting. 

Table 3. Optimal model tuning parameters for different multivariate regression methods 

Metamodels 
MSSS-Con MSC-Steel 

360 samples 1000 samples 360 samples 1000 samples 

L-PLSR 5 11 3 15 

2nd order K-PLSR 17 16 19 19 

3rd order K-PLSR 22 23 17 19 

ANN* 3 neurons, reg = 0.001 5 neurons, reg = 0.001 3 neurons, reg = 0.1 5 neurons, reg = 0.001 

* Levenberg-Marquartdt backpropagation algorithm is adopted 

 

Metamodel Predictive Performance Comparison 

The comparison of the cross-validated mean squared error (MSE) among different metamodels is shown in Table 4 to 

Table 7, for the two bridges and the two sample sizes. In general, the parameterized SDMs (L-PLSR, K-PLSR and ANN) are 

found to deliver much lower MSE level than the MvLR model. As mentioned earlier, in terms of the regression coefficients, 

MvLR is equivalent to a suite of separate univariate linear regression models (also known as the Cloud analysis as per Cornell 

et al. [15]), an approach that is widely adopted in the current practice. Therefore, the parameterized SDMs can provide more 

accurate seismic demand characterization due to the introduction of additional predictors and better capability to capture the 

nonlinear relations between the predictors and EDPs. 

Among L-PLSR, K-PLSR and ANN, the L-PLSR model exhibits relatively inferior performance because the nonlinear 

interactions between the predictors are not accounted for. Further improvement is witnessed for the Kernel-PLSR (K-PLSR) 

with 2nd order or 3rd order polynomial kernels. We notice that K-PLSR with 2nd order kernel already delivers satisfactory 

performance whereas 3rd order kernel does not lead to much extra improvement. ANN and K-PLSR, with very close MSE 

levels, consistently outperform the other multivariate regression models. It should be noted that K-PLSR generally gives lower 

MSE standard deviation (values in parenthesis in Table 4 to Table 7), suggesting that the model predictive performance of K-

PLSR is more stable than that of ANN. Moreover, ANN only shows slightly better predictive performance than K-PLSR when 

the sample size is relatively large (1000). For the smaller samples size (360), ANN fails to outperform the K-PLSR models. 

The fact that K-PLSR is able to better handle small sample size and large number of predictors can be beneficial in cases where 

each single run of NLTHA is so time consuming that one cannot afford to generate a large number of samples. 

Table 4. Cross-validated MSE comparison for different multivariate regression methods (MSSS-Con, Sample size: 360) 

Metamodels Col Ebl Ebt Fbl Fbt Aba Abp Abt Total (STD) 

MvLR 0.05 0.10 0.59 0.21 0.58 0.59 0.27 0.37 2.75 (0.20) 

L-PLSR 0.05 0.08 0.56 0.17 0.55 0.27 0.26 0.17 2.11 (0.16) 

2nd order K-PLSR 0.03 0.08 0.43 0.17 0.42 0.13 0.25 0.15 1.65 (0.17) 

3rd order K-PLSR 0.03 0.08 0.43 0.16 0.42 0.13 0.26 0.14 1.65 (0.16) 

ANN 0.05 0.10 0.40 0.15 0.39 0.16 0.26 0.16 1.67 (0.24) 

Table 5. Cross-validated MSE comparison for different multivariate regression methods (MSSS-Con, Sample size: 1000) 

Metamodels Col Ebl Ebt Fbl Fbt Aba Abp Abt Total (STD) 

MvLR 0.06 0.10 0.56 0.20 0.55 0.58 0.29 0.33 2.66 (0.12) 

L-PLSR 0.05 0.09 0.53 0.17 0.53 0.26 0.26 0.16 2.06 (0.09) 

2nd order K-PLSR 0.03 0.09 0.42 0.17 0.40 0.12 0.25 0.12 1.61 (0.09) 

3rd order K-PLSR 0.03 0.09 0.42 0.15 0.40 0.12 0.24 0.12 1.57 (0.09) 

ANN 0.04 0.09 0.38 0.14 0.36 0.12 0.24 0.12 1.49 (0.12) 
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Table 6. Cross-validated MSE comparison for different multivariate regression methods (MSC-Steel, Sample size: 360) 

Metamodels Col Ebl Ebt Fbl Fbt Aba Abp Abt Total (STD) 

MvLR 0.16 0.34 0.62 1.27 0.65 0.21 2.51 0.30 6.06 (0.53) 

L-PLSR 0.16 0.35 0.45 1.11 0.64 0.11 2.55 0.12 5.50 (0.51) 

2nd order K-PLSR 0.14 0.34 0.37 1.10 0.46 0.10 2.48 0.09 5.08 (0.66) 

3rd order K-PLSR 0.15 0.34 0.41 1.10 0.46 0.10 2.45 0.11 5.12 (0.66) 

ANN 0.19 0.38 0.50 1.17 0.49 0.12 2.43 0.17 5.44 (0.66) 

Table 7. Cross-validated MSE comparison for different multivariate regression methods (MSC-Steel, Sample size: 1000) 

Metamodels Col Ebl Ebt Fbl Fbt Aba Abp Abt Total (STD) 

MvLR 0.17 0.33 0.68 1.07 0.66 0.19 2.46 0.30 5.86 (0.33) 

L-PLSR 0.16 0.33 0.43 0.92 0.60 0.08 2.44 0.12 5.10 (0.29) 

2nd order K-PLSR 0.13 0.30 0.34 0.86 0.43 0.08 2.27 0.10 4.51 (0.29) 

3rd order K-PLSR 0.14 0.31 0.34 0.87 0.43 0.08 2.26 0.10 4.52 (0.34) 

ANN 0.13 0.29 0.34 0.86 0.40 0.11 2.27 0.10 4.51 (0.36) 

 

Discussions of Other Practical Issues 

In this section, we will investigate and discuss some other practical advantages of PLSR. For the case of the 1000-sample 

MSSS-Con bridge, the comparison of computation time of different metamodels for 200 replicates of 5-fold cross validation is 

shown in Table 8. All of the computations were performed using Matlab R2017b [25] on a personal computer with an Intel 

Core i7-6700 CPU @ 3.40 GHz and 24 GB RAM. It can be seen that the L-PLSR and 2nd order K-PLSR are highly 

computationally efficient and they even outperform the simple MvLR model. Due to further expansion of the feature space, an 

increased clock time for the 3rd order K-PLSR (21.8 s) is reported. Among all of the metamodels, ANN turns out to be the most 

time consuming one, with about 58 times the clock time of the 2nd order K-PLSR.  

Table 8. Comparison of the computation time of different metamodels for 200 replicates of 5-fold cross validation 

 MvLR ANN L-PLSR 2nd order K-PLSR 3rd order K-PLSR 

Clock time (s) 4.6 81.8 0.9 1.9 21.8 

For ANN, in order to achieve optimal predictive performance, a lot of effort is required in tuning the model parameters, 

such as the network structures (number of hidden layers and number of neurons in each hidden layer), training algorithm and 

algorithm-related parameters, and regularization parameters for overfitting control. Moreover, as shown in Table 3, for different 

datasets, the corresponding optimal ANN model parameters may also vary. In contrast, only one tuning parameter (the number 

of PLS components) is required for PLSR. Therefore, compared with ANN, PLSR is not only computationally more efficient 

but also requires much less effort in model tuning. Additionally, like the conventional linear regression methods, PLSR 

embodies good model transferability, because closed-form equations can be easily obtained. Though not shown here, past 

studies [6],[11],[16] also revealed that PLSR is robust to multicollinearity in the predictors, which may be beneficial when 

correlated predictors (e.g., correlated structural parameters or vector IMs) are considered.  

CONCLUSIONS 

In order to provide more accurate estimation of multiple correlated engineering demand parameters in probabilistic seismic 

risk assessment of structural systems, different multivariate surrogate demand modeling approaches, including Multivariate 

Linear Regression (MLR), Linear Partial Least Squares Regression (L-PLSR), Kernel PLSR (K-PLSR) and Artificial Neural 

Network (ANN) are compared based on two typical highway bridge structures. Cross-validated mean squared error is 

considered to evaluate the predictive performance of different multivariate metamodels. According to the results, ANN and K-

PLSR deliver the best predictive performance among all the multivariate regression methods compared. Particularly, K-PLSR 

reveals itself to be a promising alternative for multivariate surrogate demand modeling for its predictive performance stability, 

capability to handle small-size data with a high dimensional feature space, computational efficiency, ease of model tuning, 

robustness to multicollinearity and good model transferability. Future study should continue to explore the efficacy of PLSR 

in seismic surrogate demand modeling of other structural systems or a portfolio of structures as well as when a vector of 

multicollinear IMs are considered.  

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the support for this research by the National Science Foundation (NSF) through grants 

CMMI-1462177. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 

authors and do not necessarily reflect the views of the National Science Foundation. The help by Navya Vishnu and 



12th Canadian Conference on Earthquake Engineering, Quebec City, June 17-20, 2019 

8 

 

Sabarethninam Kameshwar in the finite element modeling is appreciated. The authors would also like to acknowledge the 

computational facilities provided by the Data Analysis and Visualization Cyberinfrastructure under NSF grant OCI-0959097, 

the Big-Data Private-Cloud Research Cyberinfrastructure MRI-award under NSF grant CNS-1338099 and Rice University. 

REFERENCES 

[1] Porter, K. A., Kiremidjian, A. S., and LeGrue, J. S. (2001). Assembly-based vulnerability of buildings and its use in 

performance evaluation. Earthquake spectra, 17(2), 291-312. 

[2] Ramirez, C. M. (2009). Building-specific loss estimation methods & tools for simplified performance-based earthquake 

engineering. Stanford University. 

[3] Padgett, J. E., and DesRoches, R. (2008). Methodology for the development of analytical fragility curves for retrofitted 

bridges. Earthquake Engineering & Structural Dynamics, 37(8), 1157-1174.  

[4] Nielson, B. G. (2005). Analytical fragility curves for highway bridges in moderate seismic zones (Doctoral dissertation, 

Georgia Institute of Technology). 

[5] Ghosh, J., Padgett, J. E., and Dueñas-Osorio, L. (2013). Surrogate modeling and failure surface visualization for efficient 

seismic vulnerability assessment of highway bridges. Probabilistic Engineering Mechanics, 34, 189-199. 

[6] Rosipal, R., & Trejo, L. J. (2001). Kernel partial least squares regression in reproducing kernel hilbert space. Journal of 

machine learning research, 2(Dec), 97-123. 

[7] Luco, N., Manuel, L., Baldava, S., and Bazzurro, P. (2005). Correlation of damage of steel moment-resisting frames to a 

vector-valued set of ground motion parameters. In Proceedings of the 9th International Conference on Structural Safety 

and Reliability (ICOSSAR05), 2719-2726. 

[8] Goda, K., and Tesfamariam, S. (2015). Multi-variate seismic demand modelling using copulas: Application to non-ductile 

reinforced concrete frame in Victoria, Canada. Structural Safety, 56, 39-51. 

[9] Mangalathu, S., Heo, G., and Jeon, J. S. (2018). Artificial neural network based multi-dimensional fragility development 

of skewed concrete bridge classes. Engineering Structures, 162, 166-176. 

[10] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: 

springer. 

[11] Wold, S., Ruhe, A., Wold, H., and Dunn, III, W. J. (1984). The collinearity problem in linear regression. The partial least 

squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3), 735-743. 

[12] De Jong, S. (1993). SIMPLS: an alternative approach to partial least squares regression. Chemometrics and intelligent 

laboratory systems, 18(3), 251-263. 

[13] Boulesteix, A. L., and Strimmer, K. (2006). Partial least squares: a versatile tool for the analysis of high-dimensional 

genomic data. Briefings in bioinformatics, 8(1), 32-44. 

[14] Johnson, R.A. and Wichern, D.W. (2007). Applied Multivariate Statistical Analysis (6th Edition). Pearson Prentice Hall, 

NJ, USA. 

[15] Cornell, C. A., Jalayer, F., Hamburger, R. O., and Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal 

emergency management agency steel moment frame guidelines. Journal of structural engineering, 128(4), 526-533. 

[16] Yeniay, O., & Goktas, A. (2002). A comparison of partial least squares regression with other prediction methods. Hacettepe 

Journal of Mathematics and Statistics, 31(99), 99-101. 

[17] Rosipal, R., and Krämer, N. (2005, February). Overview and recent advances in partial least squares. In International 

Statistical and Optimization Perspectives Workshop "Subspace, Latent Structure and Feature Selection" (pp. 34-51). 

Springer, Berlin, Heidelberg. 

[18] Kameshwar, S., Vishnu, N., and Padgett, J. E., (2019). Cloud computing using DesignSafe-CI for multi-threat bridge 

fragility modeling. – (To be submitted). Computer-aided Civil and Infrastructure Engineering. 

[19] Baker, J. W. (2010). Conditional mean spectrum: Tool for ground-motion selection. Journal of Structural 

Engineering, 137(3), 322-331. 

[20] Jayaram, N., Lin, T., and Baker, J. W. (2011). A computationally efficient ground-motion selection algorithm for matching 

a target response spectrum mean and variance. Earthquake Spectra, 27(3), 797-815. 

[21] Ancheta, T. D., et al. (2014). NGA-West2 database. Earthquake Spectra, 30(3), 989-1005. 

[22] Kohrangi, M., Bazzurro, P., Vamvatsikos, D., and Spillatura, A. (2017). Conditional spectrum‐based ground motion record 

selection using average spectral acceleration. Earthquake Engineering & Structural Dynamics, 46(10), 1667-1685. 

[23] Hassani, B., and Atkinson, G. M. (2015). Referenced empirical ground‐motion model for eastern North 

America. Seismological Research Letters, 86(2A), 477-491. 

[24] Baker, J. W., and Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground motion 

models. Earthquake Spectra, 24(1), 299-317. 

[25] Mathworks, Inc. (2017). MATLAB: R2017b. Mathworks, Inc., Natick, MA, USA. 


